1. замена геометрической фигуры аналогичным объектом, получаемым из первого по определенным правилам, или отображение множества точек пространства в себя; - 2. переход от одной системы координат к другой, более удобной для тех или иных целей. Выделяют следующие виды геометрических преобразований: аффинные преобразования (affine transformations) - точечные взаимно однозначные отображения плоскости или пространства на себя, при котором трем точкам, лежащим на одной прямой соответствуют три точки, также лежащие на одной прямой. Аффинные Г.п. переводят пересекающиеся прямые в пересекающиеся, параллельные - в параллельные. Аналогичные свойства справедливы для преобразования плоскостей. Аффинные Г.п.задаются формулами линейного алгебраического преобразования; при этом матрица преобразования имеет ненулевой определитель. Частными случаями аффинных Г.п. являются vортогональные преобразования (othogonal transformations), при которых любая прямая переходит в прямую, и сохраняются длины отрезков и углы между прямыми. Среди ортогональных геометрических преобразований в свою очередь выделяют перенос (transfer), при котором все точки смещаются на один и тот же вектор, и поворот, или вращение (rotation), при котором все точки пространства, переходят в точки, развернутые на один и тот же угол вокруг одной неподвижной точки или прямой. При вращении плоскости неподвижная точка называется центром вращения (center of rotation), при вращении пространства неподвижная прямая - осью вращения(axis of rotation). Вращение может быть собственным(proper rotation, rotation) и несобственным(improper rotation) в зависимости от того, сохраняет оно или не сохраняет ориентацию пространства. Еще одним видом ортогональных преобразований являетсядвижение (motion) - преобразование евклидова пространства, сохраняющее расстояние между двумя точками. Движение, как и вращение, называется собственным и несобственным в зависимости от того, сохраняет оно или не сохраняет ориентацию пространства. Собственное движение может быть представлено как вращение на угол и перенос. Несобственное движение представляется как собственное движение и симметрия относительно некоторой прямой.Симметрия относительно точки (reflection in a point) - частный случай ортогонального Г.п.,при котором все точки пространства переходят в точки, расположенные симметрично относительно одной неподвижной точки.