Каталог Данных Каталог Организаций Каталог Оборудования Каталог Программного Обеспечения Написать письмо Наши координаты Главная страница
RSS Реклама Карта сайта Архив новостей Форумы Опросы 
Здравствуйте! Ваш уровень доступа: Гостевой
Навигатор: Новости/
 
Rus/Eng
Поиск по сайту    
 ГИС-Ассоциация
 Аналитика и обзоры
 Нормы и право
 Конкурсы
 Дискуссии
 Наши авторы
 Публикации
 Календарь
 Биржа труда
 Словарь терминов
Проект поддерживают  


Авторизация    
Логин
Пароль

Забыли пароль?
Проблемы с авторизацией?
Зарегистрироваться




width=1 Rambler_Top100

наша статистика
статистика по mail.ru
статистика по rambler.ru

Реклама на сайте
Новостные ленты

В ТГУ нашли способ определять тип почвы по данным дистанционного зондирования Земли

Как сообщает naked-science.ru, ученые геолого-географического факультета Томского государственного университета создают карты пространственной неоднородности почвенного покрова по составу земель сельскохозяйственного назначения. Эти карты помогут правильно классифицировать почвы для высокотехнологичного земледелия. В работе используются алгоритмы машинного обучения и данные дистанционного зондирования Земли с космического аппарата Sentinel-2. Состав почв по методике ученых впервые определяется с высокой точностью – 76 процентов.


Территория исследований / ©Пресс-служба ТГУ

Результаты исследования опубликованы в журнале «Современные проблемы дистанционного зондирования Земли из космоса» (Q3). По мере того как пространственное и спектральное разрешение спутниковых изображений улучшалось, возрастала пригодность данных для их использования в многокомпонентном статистическом анализе и машинном обучении.

«Сейчас множество ученых предлагают различные подходы к обработке спутниковых и наземных данных. Но основная проблема при использовании данных спутникового зондирования для определения свойств почвы состоит в сложности компонентов почвы и почвенных спектров», – объясняет доцент кафедры метеорологии и климатологии геолого-географического факультета ТГУ Ирина Кужевская.


©Пресс-служба ТГУ

Почва содержит много химических компонентов, включая глинистые минералы, карбонаты, органический углерод, воду в различных состояниях, соли и так далее. При этом гранулометрический состав почвы оказывает большое влияние на почвообразование и агропроизводственные свойства.

От него зависят процессы перемещения, превращения и накопления веществ; физические, физико-механические и водные свойства почвы, такие как пористость, влагоемкость, водопроницаемость, водоподъемность, структурность, воздушный и тепловой режим.

«В результате исследования собранные полевые отборы проб позволили использовать методы машинного обучения, чтобы определить наиболее значимые переменные для классификации каждого типа почв. Кроме того, была предложена архитектура нейронной сети, которая способна анализировать почву по данным космического зондирования с точностью до 76 процентов», – уточнила Ирина Кужевская.

Применение подобных технологий напрямую связано с точным земледелием. В научной статье, опубликованной в журнале «Современные проблемы дистанционного зондирования Земли из космоса», рассматривается пример классификации и картографирования почв земель сельскохозяйственного назначения Южной Сибири. Отмечено, что создание нейронных сетей существенно сокращает время расчета и объем вычислительных ресурсов.


См. также:
Каталог Организаций:
   - Томский государственный университет (ТГУ)

Разделы, к которым прикреплен документ:
Страны и регионы / Россия / Сибирский ФО / Томская область
Тематич. разделы / ДДЗ
Тематич. разделы / Природопользование
Организации
Данные
Оборудование
Новости
 
Комментарии (0) Для того, чтобы оставить комментарий Вам необходимо авторизоваться или зарегистрироваться




ОБСУДИТЬ В ФОРУМЕ
Оставлено сообщений: 0


Источник: https://naked-science.ru/article/column/v-tgu-nashli-sposob 09:23:09 19.07 2021   

Версия для печати  
    Анонсы партнеров

    Наши предложения
  Новости Gisa.ru в Телеграм
  Реклама на сайте
  Зарегистрироваться и получать новости по e-mail
  Конференции ГИС-Ассоциации
  Журнал "Управление развитием территории"
  Контакты

Портал Gisa.ru использует файлы cookie для повышения удобства пользователей и обеспечения работоспособности сайта и сервисов. Оставаясь на сайте Gisa.ru вы подтверждаете свое согласие на использование файлов cookie. Если вы не хотите использовать файлы cookie, то можете изменить настройки браузера. Пользовательское соглашение. Политика конфиденциальности.
© ГИС-Ассоциация. 2002-2022 гг.
Time: 0.023540019989014 sec, Question: 78