Каталог Данных Каталог Организаций Каталог Оборудования Каталог Программного Обеспечения Написать письмо Наши координаты Главная страница
RSS Реклама Карта сайта Архив новостей Форумы Опросы 
Здравствуйте! Ваш уровень доступа: Гостевой
Навигатор: Новости/
 
Rus/Eng
Поиск по сайту    
 ГИС-Ассоциация
 Аналитика и обзоры
 Нормы и право
 Конкурсы
 Дискуссии
 Наши авторы
 Публикации
 Календарь
 Биржа труда
 Словарь терминов
Проект поддерживают  


Авторизация    
Логин
Пароль

Забыли пароль?
Проблемы с авторизацией?
Зарегистрироваться




width=1 Rambler_Top100

наша статистика
статистика по mail.ru
статистика по rambler.ru

Реклама на сайте
Новостные ленты

В МГУ создали универсальную платформу для оптимизации городской маршрутной сети

Как сообщает habr.com, математики МГУ разработали уникальную программную платформу для анализа транспортных данных. Она способствует быстрому решению задач по обеспечению эффективной работы транспортной системы и пассажиропотока в городе. Доклад был представлен на Международной научной конференции «Экономика цифровой трансформации и устойчивое развитие транспорта» (EDiTS 2022), организованной Ассоциацией поддержки научных исследований.

По данным ООН, к 2050 году более двух третей населения мира будет жить в городах, что может привести к снижению качества жизни в этих населенных пунктах. Для решения вопросов, возникающих с ростом городов, необходимо своевременно развивать городскую инфраструктуру. Определённую помощь в этом может оказать «Умный город» — концепция управления городскими ресурсами с широким использованием коммуникационных и информационных технологий. Одна из фундаментальных частей «Умного города» — «Умный транспорт». С развитием технологий сбора, хранения и обработки больших данных задачи анализа транспортных потоков изменились с их прогнозирования и оценки на прямой анализ, чему способствует доступность больших объёмов быстро обновляемой информации.

«Мы разработали открытую платформу для анализа транспортных данных, которая ориентирована на хранение и анализ двух основных компонентов транспортных данных, собираемых автоматически. Во-первых, это так называемые матрицы соответствия, которые описывают количество движений пассажиров из одной точки в другую в единицу времени. Такими “точками” могут служить географически определённые районы, а также станции, автобусные остановки и так далее. Во-вторых, это журналы использования проездных документов, например пассажирские входы на станцию метро, — поясняет один из разработчиков проекта, аспирант факультета вычислительной математики и кибернетики МГУ Марк Булыгин. — В работе мы использовали доступные для исследования данные, которые можно разделить на две большие группы: индивидуальные и агрегированные. Первые описывают передвижения отдельных пользователей транспортной сети города. Источники таких данных — смарт-карты систем общественного транспорта, используемые для оплаты проезда, и датчики GPS в смартфонах и навигаторах, а также данные со смартфонов, передаваемые с помощью специальных приложений. Агрегированные данные были получены из отдельных данных путём их объединения по районам происхождения или назначения, по временным интервалам. Основные их источники — это информация от сотовых операторов».

В частности, для работы с данными GPS в этой платформе могут быть реализованы алгоритмы анализа качества работы автобусной сети на примере функционирования отдельных маршрутов и единиц автопарка, а также методы оптимизации и оценки качества работы такси в городе. Анализ GPS-траектории пешеходов позволяет исследователям выявить проблемы в пешеходной сети города, а также выяснить места, привлекающие наибольшее количество пешеходов.

Полученные результаты являются новыми по сравнению с теми, что дают методы прогнозирования, традиционно рассматриваемые в транспортных задачах. Всё это позволит, например, сотрудникам администрации города не только управлять транспортным планированием, но и оценивать результаты других управленческих решений в городе, последствия инцидентов и так далее.

«Мы получили простой и эффективный инструмент, основанный на относительно небольшой модели, описывающей основные статистические данные об использовании транспортной системы. Одной из главных их характеристик является тот факт, что они автоматически собираются независимо от представленной платформы. Операторы электросвязи регистрируют местоположение абонентов для целей выставления счетов и технического обслуживания, и транспортные компании регистрируют проход пассажиров для собственного выставления счетов. Соответственно, накопление таких данных не требует отдельных дорогостоящих технических решений», — уточнил старший научный сотрудник лаборатории открытых информационных технологий факультета вычислительной математики и кибернетики МГУ, к.ф.-м.н. Дмитрий Намиот.


См. также:
Каталог Организаций:
   - МГУ им. М.В. Ломоносова
Каталог Оборудования:
   - GPS (Global Positioning System)

Разделы, к которым прикреплен документ:
Новости
Организации
Тематич. разделы / Градоустройство
Тематич. разделы / Hавигация, связь, транспорт
Страны и регионы / Россия
 
Комментарии (0) Для того, чтобы оставить комментарий Вам необходимо авторизоваться или зарегистрироваться




ОБСУДИТЬ В ФОРУМЕ
Оставлено сообщений: 0


Источник: https://habr.com/ru/news/t/704418/
Цитирумость документа: 1
12:26:35 09.12 2022   

Версия для печати  
    Анонсы партнеров

    Наши предложения
  Новости Gisa.ru в Телеграм
  Реклама на сайте
  Зарегистрироваться и получать новости по e-mail
  Конференции ГИС-Ассоциации
  Журнал "Управление развитием территории"
  Контакты

Портал Gisa.ru использует файлы cookie для повышения удобства пользователей и обеспечения работоспособности сайта и сервисов. Оставаясь на сайте Gisa.ru вы подтверждаете свое согласие на использование файлов cookie. Если вы не хотите использовать файлы cookie, то можете изменить настройки браузера. Пользовательское соглашение. Политика конфиденциальности.
© ГИС-Ассоциация. 2002-2022 гг.
Time: 0.025006055831909 sec, Question: 69