ООО «Политерм». Определение потребителей с ненормативными гидравлическими параметрами
Архивная публикация
Автор: Специалист компании ООО «Корпус»
Тырышкин А.С
Задача
При актуализации схемы теплоснабжения города Березники в Пермском крае определить потребителей, у которых гидравлические параметры не соответствуют нормам.
Схема теплоснабжения города Березники была разработана на основании исходных схем сетей теплоснабжения ЗАО «БСК» и ПАО «ТПлюс», топографических материалов и адресного плана города.
Основная работа – актуализация всех схем теплоснабжения, перерасчет системы по актуализированным данным по:
— Нагрузки на потребителях
— Гидравлические параметры на ПНС и ЦТП
— Гидравлические параметры в реперных точках
— Изменение температурного графика системы теплоснабжения
Помимо основной задачи было также определение потребителей с ненормативными гидравлическими параметрами и недоотпуск тепловой энергии на нужды отопления на основании реестра жалоб собственников, поступавших как в ЗАО «БСК», так и в городскую администрацию.
Виду сложной корреляции по двум инстанциям, отсутствия ведения данного списка в отношении трассировки существующих сетей и даты обращения в нужной форме, с помощью Электронной Модели систем теплоснабжения г. Березники было дано задание определить по данной схеме, после актуализации внутренней семантики, перечень потребителей и зоны действия ненормативных гидравлических параметров. Также этот перечень соотнести с имеющимися заявками от собственников на отсутствие давления во внутренних системах теплоснабжения (поквартирное разведение тепловых сетей), а в следствии отсутствие теплоснабжения.
Исходя из предоставленных заявлений и собственников и ответов ЗАО «БСК» и городской администрации, уточняем и актуализируем гидравлический режим работы на основании следующих требований:
— Давление воды в подающих трубопроводах водяных тепловых сетей при работе сетевых насосов должно приниматься, исходя из условий невскипания воды при ее максимальной температуре в любой точке подающего трубопровода, в оборудовании источника теплоты и в приборах систем потребителей, непосредственно присоединённых к тепловым сетям. (СП 124.13330.2012 «Тепловые сети» п.п. 8.9);
— Давление воды в обратных трубопроводах водяных тепловых сетей при работе сетевых насосов должно быть избыточным (не менее 0,05 МПа) и не превышать допускаемого давления в системах теплоиспользования потребителей. (СП 124.13330.2012 «Тепловые сети» п.п. 8.10);
— Давление воды в обратных трубопроводах водяных тепловых сетей открытых систем теплоснабжения в неотопительный период, а также в подающем и циркуляционном трубопроводах сетей горячего водоснабжения следует принимать не менее чем на 0,05 МПа больше статического давления систем горячего водоснабжения потребителей (СП 124.13330.2012 «Тепловые сети» п.п. 8.11);
— Также на основании гидравлического режима теплосети г. Березники БТЭЦ-2 и пиковой котельной БТЭЦ-2 в зимний период с давлением сетевой воды не более 6 кгс/кв.см, в летний период не более 3,5 кгс/кв.см.
Вводные данные
Система теплоснабжения г. Березники расположена на сложном рельефе местности и системе распределения тепловой энергии.
Город Березники построен на возвышенности и в большей своей части располагается на её южной и западной стороне. Источники тепловой энергии БТЭЦ-2 и Пиковая котельная БТЭЦ-2 располагаются в северной части города, ниже самой высокой точки города, и от источников до города ведут две тепломагистрали М1 и М2, где М2 огибает возвышенность с восточной части и обеспечивает как самые высокие точки системы, так и самые низкие в южной части города. В зонах действия магистралей также две повысительные насосные станции (в дальнейшем ПНС), поднимающие теплоноситель по обратному трубопроводу с наиболее удалённых и низких по отношению к источникам токе системы. Также до 2018 года источник тепловой энергии ТЭЦ-10 был частью системы, но в результате провалов грунта часть тепловой магистрали попала в зону возможны провалов и ТЭЦ-10 было решено ликвидировать, а южную часть города переключили на БТЭЦ-2.
Транспортировка тепла от источников до потребителей осуществляется по магистральным и распределительным тепловым сетям, общая протяжённость которых, с учётом квартальных сетей составляет более 450 км в однотрубном исчислении. Для обеспечения транспортировки и создания необходимых гидравлических режимов у потребителей, в высоких точках, на магистральных тепловых сетях выполнен «подпор» на обратном трубопроводе – за счёт насосных станция ПН-1 и ПН-2, поднимавших давление в обратном трубопроводе с наиболее удалённой и низкой южной части города.
Гидравлический режим тепловых сетей микрорайонов, находящихся в нижних точках южной части города Березники (левобережная часть), осуществляется регулировкой насосных станций, расположенных в ЦТП № 8, №11, №12, №13, №18, №23, №27. Гидравлический режим тепловых сетей районов с равнинным рельефом местности обеспечивается оборудованием источников. Гидравлический режим тепловых сетей второго контура обеспечивается работой пяти ЦТП: №9, №24, №26, №10 и №17.
Протяжённость тепловых сетей и сложный рельеф местности сформировали локальные зоны, где не обеспечиваются параметры качества предоставляемых услуг, а именно: низкий располагаемый напор и (или) превышение сверх допустимого давления в обратном трубопроводе, а также низкое значение величины коэффициента смешения в связи с удалённостью потребительской системы от источника тепла или ЦТП, определяющей значительную величину падения температуры в подающем трубопроводе.
Отпуск тепла с БТЭЦ-2 в город осуществляется по двум коллекторам: М1 2Ду 600 мм и 1Ду800 мм, М2: 2Ду 800 мм. В области павильона М1-6 была проведена реконструкция тепловых сетей, и между магистралями была установлена перемычка 2Ду500 мм, а создав переход из одной магистрали в другую:
— М2 - 2Ду800 мм в М1 - 2Ду700 мм и 1Ду800 мм;
— М1 - М1 2Ду 600 мм и 1Ду800 мм в М2 – 2Ду800мм.
В системе теплоснабжения зоны действия ТЭЦ-2 расположены ПНС ПН-1, ПН-2. Насосные станции ПН-1, ПН-2 в отопительный период находятся в работе.
ПН-1 в г. Березники Пермского края на участке, ограниченном ул. Пятилеток, ул. Кунгурская, ул. Апрельская. Присоединение насосной станции предусмотрено к существующей сети теплоснабжения по ул. Пятилеток и подключено к тепловой камере М 3-2.
ПН-2 в г. Березники Пермского края на участке по проспекту Советский до пересечения с ул. Парковая. Присоединение насосной станции предусмотрено к реконструируемому участку тепловой сети от М1-22 до М3-30. Строительство ПНС обусловлено необходимостью обеспечения нормативных значений давления в обратном трубопроводе теплоснабжения.
рисунок 1
Чтобы компенсировать сложный рельеф местности система теплоснабжения поделена на несколько зон действия:
1. Зона действия магистрали М1 до ПН-2 – от источника БТЭЦ-2 до ПН-2 в западной части города;
2. Зона действия магистрали М2 до ПН-1 – от источника Пиковой котельной БТЭЦ-2 до ПН-1 в восточной части города
3. Зона действия насосной станции ПН-1 – от ПН-1 до крайних потребителей в юго-восточной части города;
4. Зона действия насосной станции ПН-2 – от ПН-2 до крайних потребителей в юго-западной части города.
Рисунок 2 – Система теплоснабжения при различных зонах гидравлических параметров
Основная задача ПН-1 и ПН-2 – разделение системы теплоснабжения на несколько зон работы:
— Подъём теплоносителя на обратном трубопроводе из южной части города Березники до источников БТЭЦ-2 (и Пиковой Котельной БТЭЦ-2)
— Понижение давление на подающем трубопроводе для потребителей южной части города после ПН-1 и ПН-2.
Большая часть абонентов имеет зависимое присоединение к центральной системе отопления, из чего выходит рекомендуемое давление на выходе из потребителя не более 60 м.вод.ст. с целью обеспечения гидравлической безопасности и защиты внутреннего ТСО. Ниже приведены сравнительны графики работы центральной системы отопления г. Березники с работающими насосами на ПН-1 и ПН-2 и без них.
Рисунок 3 – Сравнительный график работы системы при работающей и отключённой ПН-1
Рисунок 4 – Сравнительный график работы системы при работающей и отключённой ПН-2
Как можно увидеть, область действия ПН-1 и ПН-2 приходится на район г. Березники, чьи геодезические отметки ниже центральной части города: разница между БТЭЦ-2 и самой низкой точкой в области действия ПН-1 – 22,7 м, ПН-2 – 23,7 м. Без учёта работы и дросселирующего оборудования на станциях давление в подающем трубопроводе для удалённых потребителей составит:
— для ПН-2 Р1 = 82 м.вод.ст и Р2 = 77 м.вод.ст;
— для ПН-1 Р1 = 87 м.вод.ст и Р2 = 85 м.вод.ст.
В результате для потребителей в области ПН-1 и ПН-2 без учёта работы насосной станции наблюдается низкий располагаемый на вводе, а также избыточный напор на подающем и обратном трубопроводах.
Также при работе ПНС Гидравлический расчёт (Наладочный и Поверочный) показал достаточную пропускную способность тепловой сети и отсутствие критических недопустимых параметров работы.
Определение высотных показателей и статического напора для зон действия источников
Чтобы определить какие потребители работаю не по нормативным параметрам, необходимо знать статический напор каждой зоны и его максимальные и минимальные высотные отметки (геодезическая высота в сумме с высотой здания). Можно сделать это двумя способами:
1. С помощью инструмента «Поиск пути» ограничить каждую зоны, выделить потребителей входящих в каждую, и через «окно информации» потребителей с помощью запросов определить каждый из параметров;
2. По пересечению слоя с сетями теплоснабжения и зон действия источников (продемонстрированных выше) создать SQL запрос и определить данные параметры.
Было решено использовать 2-ой вариант – создать запрос. Ниже представлен используемый запрос и его результаты: SELECT
--Из слоя [Области действия ПН] выбираем одну из строк, по которой в дальнейшем будет происходить деление
a.[Источник теплоснабжения] as "Статическая напорная зона",
--Находим среднестатистическое значение статического напора в каждой из зон действия и округляем до первого знака после запятой
round(avg(b.[Статический напор, м]), 1) as " Средний статический напор, м.вод.ст.",
--Находим максимальное значение статического напора в каждой зоне действия max(b.[Статический напор, м]) as " Максимальный статический напор, м.вод.ст.",
--Находим минимальное значение статического напора в каждой зоне действия min(b.[Статический напор, м]) as " Минимальный статический напор, м.вод.ст.",
--Находим максимальное высотное значение в каждой зоне действия max(b.[Геодезическая отметка, м] + b.[Высота здания потребителя, м]) as "Самая высокая напорная точка, м",
--Находим минимальное высотное значение в каждой зоне действия min(b.[Геодезическая отметка, м] + b.[Высота здания потребителя, м]) as "Самая низкая напорная точка, м"
--Выбираем слои с сетями теплоснабжения и зоны действия источников/зон статического напора FROM
[Области действия ПН] as a, [Сети существующие] as b
--Определяем объекты, откуда берём нужную информацию, в данном случае это потребитель, работающий WHERE
b.typeid = 3
AND b.modeid = 1
--Тип пересечения используем следящий: в зоне действия должны содержаться выбранные объекты и слоя сетей теплоснабжения
AND a.geometry.stcontains(b.geometry)
--Группируем полученные данные по зона действия источников/зон статического напора, содержащиеся в базе данных слоя GROUP BY
a.[Источник теплоснабжения]
Получаем следующий результат:
Таблица № 1 – Показатели напора гидравлических зон действия
Таблица №2 – Сравнительные значения показателей напора гидравлических зон действия
Разница между самыми высокими и низкими точками в каждой из зон выше 50 м. – весьма большой перепад высот. Разница с статическом напоре и высотными точками между зонами магистралей не очень высока, как и между зонами ПН, и в тоже время ощутимая для самих потребителей и оборудования на вводе. Чтобы лучше понимать ситуацию с перепадом высот необходимо понимать, расположение потребителей с ненормативными гидравлическими параметрами, а также рельеф местности.
Для этого необходимо построить изолинии, чтобы визуально понять ситуацию в городе. Для этого воспользуемся актуализированными «отметками уровня земли, м» проставленными на каждом из существующем «объекте» сети и на основании их построим рельеф, и на основании этого рельефа построим изолинии.
Имеем следующий результат:
Рисунок 5 – Карта изолиний, построенная на слое рельеф
Рисунок 6 – Карта изолиний, построенная на слое рельеф с нанесением сетей г. Березники
Что можно понять из построенных изолиний и наложенных существующий сетей:
— Центр города располагается на возвышенности, а окраины располагаются в низменности;
— Обе части города (разделённые на магистрали М1 и М2) по тепловым сетям поднимают в самые высокие точки рельефа и также спускаются, создавая ситуацию, что одна и таже точка, от которой разветвляются магистральные сети поддерживает давление и в самое его высокой части и самой низкой – разница между высокими и низкими точками рельефа высока;
— ПН-1 и ПН-2 поднимают теплоноситель с самых низких точек системы теплоснабжения.
Данная проблема возникла в результате быстрого роста города и расширения сетей – мощности насосов на источниках тепловой энергии было достаточно для обеспечения потребителей, располагающихся на возвышенности, но излишняя сложность нивелировали весь результат, и в следствии чего в одной и той же точке магистральной сети существуют потребители с избытков давления на вводе в абонент и недостаток напора для заполняемости системы по обратному трубопроводу.
Определение потребителей с ненормативным значением гидравлических параметров
Чтобы определить потребителей с ненормативными гидравлическими параметрами, создадим несколько тематических раскрасок, для определения их на тепловых сетях и последующей визуализацией.
Первая раскраска для определения потребителей, давление на обратном трубопроводе у которых ниже высоты здания и дополнительного резерва в 5 м.вод.ст.
Рисунок 7 – Параметры тематической раскраски для потребителей №1
Следующая тематическая раскраска для потребителей, напор на обратном трубопроводе у которых ниже уровня статического напора и запаса в 5 м.вод.ст.
Рисунок 8 – Параметры тематической раскраски для потребителей №2
Как мы уже знаем, статический напор для каждой зоны разный и для большинства ситуаций разрешение проблем с ненормативными гидравлическими параметрами будет индивидуальный.
В результате имеем следующую картину по потребителям, у которых не выполняет условие заполняемости системы – давление в обратном трубопроводе ниже высоты здания и запаса в 5 м.вод.ст.
Рисунок 9 – Тематическая раскраска потребителей, давление на вводе которых ниже высоты здания на изображении изолиний
Как можно увидеть из данной картины потребители, у которых не соблюдается принцип заполняемости системы заполняемости, располагаются в наиболее высоких точках системы. Часть потребителей находится разрозненно, и данная проблема регулируется установкой на обратных трубопроводах регуляторов давления «до себя» с целью повышения уровня давления до требуемых параметров.
Часть потребителей располагается после ЦТП, в данном случае будет рекомендовано к рассмотрению изменению режимных карт данных ЦТП с изменением давления на выходе из насосных станций.
Теперь рассмотрим картину для потребителей, напор на обратном трубопроводе у которых ниже уровня статического напора и запаса в 5 м.вод.ст.
Рисунок 10 – Тематическая раскраска потребителей, давление на вводе которых ниже статического давления на изображении изолиний
Как можно понять, картина существенно меняется и мало пересекается с предшествующей проблемой. В данном случае на участки магистральных сетей и зоны действия ЦТП накладывается факт, что в точке разветвления сети одна ветка поднимается по рельефу выше, другая опускается и разница между высотными точками становится существенной (как мы видели из Таблицы №2 – свыше 50 м.).
Решение проблемы ненормативного напора на абонентах тепловой энергии
Так как проблемы в целом являются результатом неудачной планировки трассировки сетей, разрешается эта ситуация следующим образом:
1. Увеличение располагаемого напора на источнике и понижение напора на обратном трубопроводе:
— БТЭЦ-2 (М1-М2) до 46 м.вод.ст в обратном трубопроводе, 63 м.вод.ст располагаемые напоры;
— Пиковая котельная БТЭЦ-2 (М2-М1) до 46 м.вод.ст в обратном трубопроводе, 62 м.вод.ст располагаемые напоры
— БТЭЦ-2 (М1-М2) после 40 м.вод.ст в обратном трубопроводе, 68 м.вод.ст располагаемые напоры;
— Пиковая котельная БТЭЦ-2 (М2-М1) после 43,62 м.вод.ст в обратном трубопроводе, 68 м.вод.ст располагаемые напоры.
2. Корректировка напоров на ПН-1 и ПН-2 и регуляторах давления;
3. Корректировка напоров на ЦТП, на которых установлены теплообменники;
4. Корректировка напоров на ЦТП, на которых установлены насосы на обратном трубопроводе;
5. Установка регуляторов давления «до себя» на обратных трубопровода в тех ответвлениях, где общие гидравлические изменения оказались недостаточны;
6. Установка на потребителях дополнительного защитного оборудования там, где соблюдение всех условий нормативного давления в обратном трубопроводе по тем или иным причинам невозможны;
7. По итоговым расчётам и замерам, были приведены следующие изменения:
Таблица №3 Гидравлические характеристики Источников до корректировки и после
Таблица №4 Гидравлические характеристики насосных станций до корректировки и после
Также для индивидуальных потребителей с ненормативными гидравлическими параметрами были предусмотрены следующие решения:
Для потребителей ЦТП-28Б предусмотрен насос на обратном трубопроводе в районе самого строения ЦТП.
Последовавшие изменения в гидравлике приведены на сравнительных пьезометрических графиках ниже. Также приведены основные характеристики дросселирующих узлов и насосной станции, которые были введены в качестве элементов корректировки и регулирования давления в сетях.
Таблица 7 Основные параметры насоса на обратном трубопроводе ЦТП-28Б
Компания «Политерм» входит в группу «Проект поддерживают» портала Gisa.ru