Каталог Данных Каталог Организаций Каталог Оборудования Каталог Программного Обеспечения Написать письмо Наши координаты Главная страница
RSS Реклама Карта сайта Архив новостей Форумы Опросы 
Здравствуйте! Ваш уровень доступа: Гостевой
Навигатор: Новости/
 
Rus/Eng
Поиск по сайту    
 ГИС-Ассоциация
 Аналитика и обзоры
 Нормы и право
 Конкурсы
 Дискуссии
 Наши авторы
 Публикации
 Календарь
 Биржа труда
 Словарь терминов
Проект поддерживают  


Авторизация    
Логин
Пароль

Забыли пароль?
Проблемы с авторизацией?
Зарегистрироваться


width=1 Rambler_Top100

наша статистика
статистика по mail.ru
статистика по rambler.ru

Реклама на сайте
Новостные ленты

Найден способ улучшить геопространственное моделирование

Как сообщает naked-science.ru, методы геопространственного моделирования стали важным инструментом экологического мониторинга — с его помощью управляют рисками для окружающей среды и отслеживают угрозы стихийных бедствий. Все большее применение в геопространственных исследованиях находит машинное обучение. Исследователи публикуют множество статей, в которых сообщают об улучшении моделей, решении фундаментальных задач и новых подходах, в том числе в естественных науках. Однако часто такие публикации страдают от методологических ошибок в основном из-за ограничений, присущих машинному обучению. Группа ученых из Сколтеха и Института AIRI провела анализ научной литературы, выявив типичные проблемы и предлагаемые решения.


Пример количественной оценки неопределенности для пространственного картографирования. а) Карта, демонстрирующая уровень кислотности верхнего слоя почвы. b) Карта, на которой более высокие значения указывают на большую неопределенность данных / © Challenges in data-driven geospatial modeling for environmental research and practice
Пример количественной оценки неопределенности для пространственного картографирования. а) Карта, демонстрирующая уровень кислотности верхнего слоя почвы. b) Карта, на которой более высокие значения указывают на большую неопределенность данных / © Challenges in data-driven geospatial modeling for environmental research and practice


Результаты работы представлены в статье-обзоре, опубликованной в журнале Nature Communications.

«Мы определили, что среди ключевых трудностей — несбалансированность и неравномерность данных, пространственная автокорреляция, смещения в данных, ошибки прогнозов и сложности в оценке неопределенности моделей. Хотя эти проблемы известны, существующие подходы зачастую игнорируют их, ограничиваясь стандартными процедурами обучения и валидации моделей машинного обучения», — рассказала первый автор работы Диана Колдасбаева, аспирант Сколтеха по программе «Вычислительные системы и анализ данных в науке и технике».

«Для устранения этих ограничений требуется разработка методов, учитывающих уникальные особенности экологических данных и пространственно-временных процессов. В статье представлен единый подход к решению таких задач, включающий инструменты и техники для повышения точности моделей, а также рекомендации по улучшению оценки их качества. Мы надеемся, что наши результаты помогут в выборе направлений исследований ученым из разных стран», — поделился соавтор работы Алексей Зайцев, старший преподаватель Центра искусственного интеллекта Сколтеха.

Авторы также определили ключевые направления развития геопространственных исследований с учетом специфики экологических данных и представили собственную подборку передовых инструментов, ресурсов и проектов, которые используют возможности геопространственных технологий для решения экологических проблем. Исследователи разместили ее в открытом доступе на GitHub и приглашают коллег пользоваться источником и дополнять его.

«В исследовании мы определили новые наборы данных, модели и подходы для обеспечения качества работы, необходимого для внедрения в отрасли прикладных научных разработок и решения проблемы интерпретируемости прогнозов, основанных на данных. К примеру, крайне важно создавать хорошо организованные базы данных. Более качественные данные естественным образом приводят к уменьшению искажений, связанных с дисбалансом и автокорреляцией. Мы ожидаем появления самообучения для геопространственного картографирования в экологических исследованиях, аналогично тому, что мы уже видели в языковом моделировании и компьютерном зрении», — прокомментировал работу Евгений Бурнаев, директор Центра искусственного интеллекта в Сколтехе и руководитель научной группы «Обучаемый интеллект» в Институте AIRI.


Разделы, к которым прикреплен документ:
Страны и регионы / Россия
Тематич. разделы / Картография, ГИС
Организации
Новости
 
Комментарии (0) Для того, чтобы оставить комментарий Вам необходимо авторизоваться или зарегистрироваться




ОБСУДИТЬ В ФОРУМЕ
Оставлено сообщений: 0


Источник: https://naked-science.ru/article/column/geoprostranstvennoe-model#utm_source=yxnews&utm_medium=desktop&utm_referrer=https%3A%2F%2Fdzen.ru%2Fnews%2Fsearch 17:36:17 31.01 2025   

Версия для печати  
    Анонсы партнеров

    Наши предложения
  Новости Gisa.ru в Телеграм
  Реклама на сайте
  Зарегистрироваться и получать новости по e-mail
  Конференции ГИС-Ассоциации
  Журнал "Управление развитием территории"
  Контакты

Портал Gisa.ru использует файлы cookie для повышения удобства пользователей и обеспечения работоспособности сайта и сервисов. Оставаясь на сайте Gisa.ru вы подтверждаете свое согласие на использование файлов cookie. Если вы не хотите использовать файлы cookie, то можете изменить настройки браузера. Пользовательское соглашение. Политика конфиденциальности.
© ГИС-Ассоциация. 2002-2022 гг.
Time: 0.0086729526519775 sec, Question: 58